Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 905: 167062, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-37709077

RESUMEN

Soil mineral elements play a crucial role in ecosystem productivity and pollution dynamics. Climate models project an increase in drought severity in the Mediterranean Basin in the coming decades, which could lead to changes in the composition and concentrations of mineral elements in soils. These changes can have significant impacts on the fundamental processes of plant-soil cycles. While previous studies have predominantly focused on carbon, nitrogen, and phosphorus, there is a notable lack of research on the biogeochemical responses of other mineral elements to increasing drought. In this study, we investigated the effects of chronic drought (15 years of experimental rainfall exclusion) and seasonal drought (summer period) on the extractable soil concentrations of 17 mineral elements (arsenic (As), calcium (Ca), cadmium (Cd), chromium (Cr), copper (Cu), iron (Fe), mercury (Hg), potassium (K), magnesium (Mg), manganese (Mn), molybdenum (Mo), nickel (Ni), lead (Pb), sulphur (S), strontium (Sr), vanadium (V) and zinc (Zn)) in a Mediterranean holm oak forest. We also explored the potential biotic and abiotic mechanisms underlying the changes in extractable elemental concentrations under chronic drought conditions. Our findings reveal that soil elemental concentrations varied significantly due to seasonal changes and chronic drought, with soil microclimate, biological activity, and organic matter being the main drivers of this variability. Levels of soil water content primarily explained the observed variations in soil elemental concentrations. Most of the mineral elements (13 out of 17) exhibited higher concentrations during winter-spring (wet seasons) compared to summer-autumn (dry seasons). The chronic drought treatment resulted in K limitation, increasing vegetation vulnerability to drought stress. Conversely, the accumulation of S in soils due to drought may intensify the risk of S losses from the plant-soil system. Under drought conditions, certain trace elements (particularly Mn, V, and Cd) exhibited increased extractability, posing potential risks to plant health and the exportation of these elements into continental waters. Overall, our results suggest that alterations in mineral element concentrations under future drier conditions could promote ecosystem degradation and pollution dispersion in the Mediterranean Basin. Understanding and predicting these changes are essential for effective ecosystem management and mitigating the potential negative impacts on plant health and water quality.


Asunto(s)
Mercurio , Contaminantes del Suelo , Oligoelementos , Suelo , Ecosistema , Cadmio/análisis , Sequías , Oligoelementos/análisis , Bosques , Manganeso , Minerales , Contaminantes del Suelo/análisis
2.
Ecology ; 104(11): e4118, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37282712

RESUMEN

Biogeochemical niche (BN) hypothesis aims to relate species/genotype elemental composition with its niche based on the fact that different elements are involved differentially in distinct plant functions. We here test the BN hypothesis through the analysis of the 10 foliar elemental concentrations and 20 functional-morphological of 60 tree species in a French Guiana tropical forest. We observed strong legacy (phylogenic + species) signals in the species-specific foliar elemental composition (elementome) and, for the first time, provide empirical evidence for a relationship between species-specific foliar elementome and functional traits. Our study thus supports the BN hypothesis and confirms the general niche segregation process through which the species-specific use of bio-elements drives the high levels of α-diversity in this tropical forest. We show that the simple analysis of foliar elementomes may be used to test for BNs of co-occurring species in highly diverse ecosystems, such as tropical rainforests. Although cause and effect mechanisms of leaf functional and morphological traits in species-specific use of bio-elements require confirmation, we posit the hypothesis that divergences in functional-morphological niches and species-specific biogeochemical use are likely to have co-evolved.


Asunto(s)
Ecosistema , Árboles , Bosque Lluvioso , Guyana Francesa , Clima Tropical , Hojas de la Planta/química
3.
Glob Chang Biol ; 29(3): 719-730, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36282495

RESUMEN

Climatic warming has lengthened the photosynthetically active season in recent decades, thus affecting the functioning and biogeochemistry of ecosystems, the global carbon cycle and climate. Temperature response of carbon uptake phenology varies spatially and temporally, even within species, and daily total intensity of radiation may play a role. We empirically modelled the thresholds of temperature and radiation under which daily carbon uptake is constrained in the temperate and cold regions of the Northern Hemisphere, which include temperate forests, boreal forests, alpine and tundra biomes. The two-dimensionality of the temperature-radiation constraint was reduced to one single variable, θ, which represents the angle in a polar coordinate system for the temperature-radiation observations during the start and end of the growing season. We found that radiation will constrain the trend towards longer growing seasons with future warming but differently during the start and end of season and depending on the biome type and region. We revealed that radiation is a major factor limiting photosynthetic activity that constrains the phenology response to temperature during the end-of-season. In contrast, the start of the carbon uptake is overall highly sensitive to temperature but not constrained by radiation at the hemispheric scale. This study thus revealed that while at the end-of-season the phenology response to warming is constrained at the hemispheric scale, at the start-of-season the advance of spring onset may continue, even if it is at a slower pace.


Asunto(s)
Carbono , Ecosistema , Bosques , Estaciones del Año , Tundra , Temperatura , Cambio Climático
4.
Sci Total Environ ; 802: 149769, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34464786

RESUMEN

Production, emission, and absorption of biogenic volatile organic compounds (BVOCs) in ecosystem soils and associated impacts of nutrient availability are unclear; thus, predictions of effects of global change on source-sink dynamic under increased atmospheric N deposition and nutrition imbalances are limited. Here, we report the dynamics of soil BVOCs under field conditions from two undisturbed tropical rainforests from French Guiana. We analyzed effects of experimental soil applications of nitrogen (N), phosphorus (P), and N + P on soil BVOC exchanges (in particular of total terpenes, monoterpenes, and sesquiterpenes), to determine source and sink dynamics between seasons (dry and wet) and elevations (upper and lower elevations corresponding to top of the hills (30 m high) and bottom of the valley). We identified 45 soil terpenoids compounds emitted to the atmosphere, comprising 26 monoterpenes and 19 sesquiterpenes; of these, it was possible to identify 13 and 7 compounds, respectively. Under ambient conditions, soils acted as sinks of these BVOCs, with greatest soil uptake recorded for sesquiterpenes at upper elevations during the wet season (-282 µg m-2 h-1). Fertilization shifted soils from a sink to source, with greatest levels of terpene emissions recorded at upper elevations during the wet season, following the addition of N (monoterpenes: 406 µg m-2 h-1) and P (sesquiterpenes: 210 µg m-2 h-1). Total soil terpene emission rates were negatively correlated with total atmospheric terpene concentrations. These results indicate likely shifts in tropical soils from sink to source of atmospheric terpenes under projected increases in N deposition under global change, with potential impacts on regional-scale atmospheric chemistry balance and ecosystem function.


Asunto(s)
Nitrógeno , Suelo , Ecosistema , Fertilización , Bosques , Fósforo , Terpenos
5.
Front Plant Sci ; 11: 1154, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32849712

RESUMEN

Currently, a global analysis of the information available on the relative composition of the floral scents of a very diverse variety of plant species is missing. Such analysis may reveal general patterns on the distribution and dominance of the volatile compounds that form these mixtures, and may also allow measuring the effects of factors such as the phylogeny, pollination vectors, and climatic conditions on the floral scents of the species. To fill this gap, we compiled published data on the relative compositions and emission rates of volatile organic compounds (VOCs) in the floral scents of 305 plant species from 66 families. We also gathered information on the groups of pollinators that visited the flowers and the climatic conditions in the areas of distribution of these species. This information allowed us to characterize the occurrence and relative abundances of individual volatiles in floral scents and the effects of biotic and climatic factors on floral scent. The monoterpenes trans-ß-ocimene and linalool and the benzenoid benzaldehyde were the most abundant floral VOCs, in both ubiquity and predominance in the floral blends. Floral VOC richness and relative composition were moderately preserved traits across the phylogeny. The reliance on different pollinator groups and the climate also had important effects on floral VOC richness, composition, and emission rates of the species. Our results support the hypothesis that key compounds or compounds originating from specific biosynthetic pathways mediate the attraction of the main pollinators. Our results also indicate a prevalence of monoterpenes in the floral blends of plants that grow in drier conditions, which could link with the fact that monoterpene emissions protect plants against oxidative stresses throughout drought periods and their emissions are enhanced under moderate drought stress. Sesquiterpenes, in turn, were positively correlated with mean annual temperature, supporting that sesquiterpene emissions are dominated mainly by ambient temperature. This study is the first to quantitatively summarise data on floral-scent emissions and provides new insights into the biotic and climatic factors that influence floral scents.

6.
Sci Total Environ ; 742: 140637, 2020 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-32721746

RESUMEN

Soil temperature remains isothermal at 0 °C and water shifts to a liquid phase during soil thawing. Vegetation may receive this process as a signal and a key to restore physiological activity. We aimed to show the relationship between the timing of soil thawing and the spring growth onset. We estimated the delay between the soil thawing and the spring growth onset in 78 sites of the FLUXNET network. We built a soil thawing map derived from modeling for the northern hemisphere and related it to the greenness onset estimated with satellite imagery. Spring onset estimated with GPP time series occurred shortly after soil surface thawing in tundra (1.1 ± 3.5 days) and alpine grasslands (16.6 ± 5.8 days). The association was weaker for deciduous forests (40.3 ± 4.2 days), especially where soils freeze infrequently. Needleleaved forests tended to start the growing season before the end of thawing (-17.4 ± 3.6 days), although observations from remote sensing (MODIS Land Cover Dynamics) indicated that the onset of greenness started after the thawing period (26.8 ± 3.2 days). This study highlights the role of soil temperature at the spring growth onset at high latitudes. Soil thawing becomes less relevant in temperate forests, where soil is occasionally frozen and other climate factors become more important.


Asunto(s)
Suelo , Tundra , Cambio Climático , Ecosistema , Bosques , Estaciones del Año , Temperatura
7.
Artículo en Inglés | MEDLINE | ID: mdl-32570891

RESUMEN

Monoterpenes have been identified as potential determinants of the human health effects induced by forest exposure. The present study characterizes the total monoterpene concentrations at nose height in a Mediterranean Holm oak forest located in North-East Iberian Peninsula during the annual emission peak (summer and autumn: June to November) using a Proton Transfer Reaction-Mass Spectrometry (PTR-MS). Results show a strong variability of the total monoterpene concentrations in season and daytime. The concentration peak appears during July and August. These two months displayed two average maxima in their diel cycles: One during early morning (from 6:00 to 8:00, 0.30 ppbv for July and 0.41 ppbv for August) and another one at early afternoon (from 13:00 to 15:00, 0.27 ppbv during July and 0.32 ppbv during August). Monoterpene concentrations were strongly related with the temperature (exponentially) and solar radiation (rectangular hyperbolic relationship). The concentrations registered here are similar or higher than in previous ex situ studies showcasing the effects of forests on human health. These findings provide relevant data for the scientific and healthcare community by improving the understanding of monoterpene dynamics at nose height and suggesting further research on the effects of forests on human health, particularly in the Mediterranean region.


Asunto(s)
Bosques , Monoterpenos , Monitoreo del Ambiente , Europa (Continente) , Humanos , Monoterpenos/análisis , Estaciones del Año , Árboles
8.
Glob Chang Biol ; 26(9): 4722-4751, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32445424

RESUMEN

Biogenic volatile organic compounds (BVOCs) play important roles at cellular, foliar, ecosystem and atmospheric levels. The Amazonian rainforest represents one of the major global sources of BVOCs, so its study is essential for understanding BVOC dynamics. It also provides insights into the role of such large and biodiverse forest ecosystem in regional and global atmospheric chemistry and climate. We review the current information on Amazonian BVOCs and identify future research priorities exploring biogenic emissions and drivers, ecological interactions, atmospheric impacts, depositional processes and modifications to BVOC dynamics due to changes in climate and land cover. A feedback loop between Amazonian BVOCs and the trends of climate and land-use changes in Amazonia is then constructed. Satellite observations and model simulation time series demonstrate the validity of the proposed loop showing a combined effect of climate change and deforestation on BVOC emission in Amazonia. A decreasing trend of isoprene during the wet season, most likely due to forest biomass loss, and an increasing trend of the sesquiterpene to isoprene ratio during the dry season suggest increasing temperature stress-induced emissions due to climate change.


Asunto(s)
Compuestos Orgánicos Volátiles , Cambio Climático , Ecosistema , Bosques , Estaciones del Año
9.
Plant Cell Environ ; 42(12): 3264-3279, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31325364

RESUMEN

Chlorophyll a fluorescence (ChlF) is closely related to photosynthesis and can be measured remotely using multiple spectral features as solar-induced fluorescence (SIF). In boreal regions, SIF shows particular promise as an indicator of photosynthesis, in part because of the limited variation of seasonal light absorption in these ecosystems. Seasonal spectral changes in ChlF could yield new information on processes such as sustained nonphotochemical quenching (NPQS ) but also disrupt the relationship between SIF and photosynthesis. We followed ChlF and functional and biochemical properties of Pinus sylvestris needles during the photosynthetic spring recovery period to answer the following: (a) How ChlF spectra change over seasonal timescales? (b) How pigments, NPQS , and total photosynthetically active radiation (PAR) absorption drive changes of ChlF spectra? (c) Do all ChlF wavelengths track photosynthetic seasonality? We found seasonal ChlF variation in the red and far-red wavelengths, which was strongly correlated with NPQS , carotenoid content, and photosynthesis (enhanced in the red), but not with PAR absorption. Furthermore, a rapid decrease in red/far-red ChlF ratio occurred in response to a cold spell, potentially relating to the structural reorganization of the photosystems. We conclude that all current SIF retrieval features can track seasonal photosynthetic dynamics in boreal evergreens, but the full SIF spectra provides additional insight.


Asunto(s)
Clorofila/metabolismo , Fotosíntesis , Pinus sylvestris/fisiología , Hojas de la Planta/fisiología , Estaciones del Año , Fluorescencia , Modelos Lineales , Conceptos Meteorológicos , Análisis de Componente Principal
10.
Nat Commun ; 10(1): 3109, 2019 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-31337752

RESUMEN

Biological responses to climate change have been widely documented across taxa and regions, but it remains unclear whether species are maintaining a good match between phenotype and environment, i.e. whether observed trait changes are adaptive. Here we reviewed 10,090 abstracts and extracted data from 71 studies reported in 58 relevant publications, to assess quantitatively whether phenotypic trait changes associated with climate change are adaptive in animals. A meta-analysis focussing on birds, the taxon best represented in our dataset, suggests that global warming has not systematically affected morphological traits, but has advanced phenological traits. We demonstrate that these advances are adaptive for some species, but imperfect as evidenced by the observed consistent selection for earlier timing. Application of a theoretical model indicates that the evolutionary load imposed by incomplete adaptive responses to ongoing climate change may already be threatening the persistence of species.


Asunto(s)
Aclimatación/fisiología , Aves/fisiología , Cambio Climático , Fenotipo , Animales , Selección Genética/fisiología , Factores de Tiempo
11.
New Phytol ; 220(3): 773-784, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29120052

RESUMEN

The emission of isoprenoids (e.g. isoprene and monoterpenes) by plants plays an important defensive role against biotic and abiotic stresses. Little is known, however, about the functional traits linked to species-specific variability in the types and rates of isoprenoids emitted and about possible co-evolution of functional traits with isoprenoid emission type (isoprene emitter, monoterpene emitter or both). We combined data for isoprene and monoterpene emission rates per unit dry mass with key functional traits (foliar nitrogen (N) and phosphorus (P) concentrations, and leaf mass per area) and climate for 113 plant species, covering the boreal, wet temperate, Mediterranean and tropical biomes. Foliar N was positively correlated with isoprene emission, and foliar P was negatively correlated with both isoprene and monoterpene emission rate. Nonemitting plants generally had the highest nutrient concentrations, and those storing monoterpenes had the lowest concentrations. Our phylogenetic analyses found that the type of isoprenoid emission followed an adaptive, rather than a random model of evolution. Evolution of isoprenoids may be linked to nutrient availability. Foliar N and P are good predictors of the type of isoprenoid emission and the rate at which monoterpenes, and to a lesser extent isoprene, are emitted.


Asunto(s)
Butadienos/análisis , Hemiterpenos/análisis , Nitrógeno/metabolismo , Fósforo/metabolismo , Plantas/metabolismo , Compuestos Orgánicos Volátiles/análisis , Clima , Modelos Teóricos , Filogenia , Análisis de Componente Principal
12.
Molecules ; 22(7)2017 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-28703755

RESUMEN

ß-Ocimene is a very common plant volatile released in important amounts from the leaves and flowers of many plant species. This acyclic monoterpene can play several biological functions in plants, by potentially affecting floral visitors and also by mediating defensive responses to herbivory. The ubiquity and high relative abundance of ß-ocimene in the floral scents of species from most plant families and from different pollination syndromes (ranging from generalism to specialism) strongly suggest that this terpenoid may play an important role in the attraction of pollinators to flowers. We compiled abundant evidence from published studies that supports ß-ocimene as a generalist attractant of a wide spectrum of pollinators. We found no studies testing behavioural responses of pollinators to ß-ocimene, that could directly demonstrate or deny the function of ß-ocimene in pollinator attraction; but several case studies support that the emissions of ß-ocimene in flowers of different species follow marked temporal and spatial patterns of emission, which are typical from floral volatile organic compound (VOC) emissions that are involved in pollinator attraction. Furthermore, important ß-ocimene emissions are induced from vegetative plant tissues after herbivory in many species, which have relevant functions in the establishment of tritrophic interactions. We thus conclude that ß-ocimene is a key plant volatile with multiple relevant functions in plants, depending on the organ and the time of emission. Experimental behavioural studies on pure ß-ocimene conducted with pollinating insects will be necessary to prove the assumptions made here.


Asunto(s)
Alquenos/química , Plantas/química , Compuestos Orgánicos Volátiles/química , Monoterpenos Acíclicos , Alquenos/metabolismo , Animales , Flores/química , Flores/genética , Flores/metabolismo , Plantas/genética , Polinización/genética , Compuestos Orgánicos Volátiles/metabolismo
13.
Trends Plant Sci ; 21(10): 854-860, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27401253

RESUMEN

Due to their antimicrobial effects and their potential role as carbon sources, plant volatile organic compound (VOC) emissions play significant roles in determining the characteristics of the microbial communities that can establish on plant surfaces. Furthermore, epiphytic microorganisms, including bacteria and fungi, can affect plant VOC emissions in different ways: by producing and emitting their own VOCs, which are added to and mixed with the plant VOC blend; by affecting plant physiology and modifying the production and emission of VOCs; and by metabolizing the VOCs emitted by the plant. The study of the interactions between plant VOC emissions and phyllospheric microbiotas is thus of great interest and deserves more attention.


Asunto(s)
Microbiota , Plantas/microbiología , Compuestos Orgánicos Volátiles/metabolismo , Bacterias/efectos de los fármacos , Bacterias/metabolismo , Hongos/efectos de los fármacos , Hongos/metabolismo , Microbiota/efectos de los fármacos , Microbiota/fisiología , Plantas/metabolismo
14.
Sci Rep ; 6: 28269, 2016 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-27301671

RESUMEN

Severe droughts strongly impact photosynthesis (GPP), and satellite imagery has yet to demonstrate its ability to detect drought effects. Especially changes in vegetation functioning when vegetation state remains unaltered (no browning or defoliation) pose a challenge to satellite-derived indicators. We evaluated the performance of different satellite indicators to detect strong drought effects on GPP in a beech forest in France (Hesse), where vegetation state remained largely unaffected while GPP decreased substantially. We compared the results with three additional sites: a Mediterranean holm oak forest (Puéchabon), a temperate beech forest (Hainich), and a semi-arid grassland (Bugacpuszta). In Hesse, a three-year reduction in GPP following drought was detected only by the Enhanced Vegetation Index (EVI). The Photochemical Reflectance Index (PRI) also detected this drought effect, but only after normalization for absorbed light. In Puéchabon normalized PRI outperformed the other indicators, while the short-term drought effect in Hainich was not detected by any tested indicator. In contrast, most indicators, but not PRI, captured the drought effects in Bugacpuszta. Hence, PRI improved detection of drought effects on GPP in forests and we propose that PRI normalized for absorbed light is considered in future algorithms to estimate GPP from space.


Asunto(s)
Sequías , Tecnología de Sensores Remotos , Bosques , Francia , Fotosíntesis
15.
BMC Plant Biol ; 16: 78, 2016 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-27048394

RESUMEN

BACKGROUND: The phyllospheric microbiota is assumed to play a key role in the metabolism of host plants. Its role in determining the epiphytic and internal plant metabolome, however, remains to be investigated. We analyzed the Liquid Chromatography-Mass Spectrometry (LC-MS) profiles of the epiphytic and internal metabolomes of the leaves and flowers of Sambucus nigra with and without external antibiotic treatment application. RESULTS: The epiphytic metabolism showed a degree of complexity similar to that of the plant organs. The suppression of microbial communities by topical applications of antibiotics had a greater impact on the epiphytic metabolome than on the internal metabolomes of the plant organs, although even the latter changed significantly both in leaves and flowers. The application of antibiotics decreased the concentration of lactate in both epiphytic and organ metabolomes, and the concentrations of citraconic acid, acetyl-CoA, isoleucine, and several secondary compounds such as terpenes and phenols in the epiphytic extracts. The metabolite pyrogallol appeared in the floral epiphytic community only after the treatment. The concentrations of the amino acid precursors of the ketoglutarate-synthesis pathway tended to decrease in the leaves and to increase in the foliar epiphytic extracts. CONCLUSIONS: These results suggest that anaerobic and/or facultative anaerobic bacteria were present in high numbers in the phyllosphere and in the apoplasts of S. nigra. The results also show that microbial communities play a significant role in the metabolomes of plant organs and could have more complex and frequent mutualistic, saprophytic, and/or parasitic relationships with internal plant metabolism than currently assumed.


Asunto(s)
Flores/metabolismo , Metaboloma/fisiología , Microbiota/fisiología , Hojas de la Planta/metabolismo , Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Bacterias/crecimiento & desarrollo , Cloranfenicol/farmacología , Cromatografía Liquida , Flores/efectos de los fármacos , Flores/microbiología , Interacciones Huésped-Patógeno/efectos de los fármacos , Espectrometría de Masas , Metaboloma/efectos de los fármacos , Metabolómica/métodos , Microbiota/efectos de los fármacos , Análisis Multivariante , Oxitetraciclina/farmacología , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/microbiología , Análisis de Componente Principal , Sambucus nigra/efectos de los fármacos , Sambucus nigra/metabolismo , Sambucus nigra/microbiología , Estreptomicina/farmacología , Simbiosis/efectos de los fármacos
16.
New Phytol ; 209(1): 152-60, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26346807

RESUMEN

In this work we analyzed the degradation of floral scent volatiles from Brassica nigra by reaction with ozone along a distance gradient and the consequences for pollinator attraction. For this purpose we used a reaction system comprising three reaction tubes in which we conducted measurements of floral volatiles using a proton-transfer-reaction time-of-flight mass spectrometer (PTR-TOF-MS) and GC-MS. We also tested the effects of floral scent degradation on the responses of the generalist pollinator Bombus terrestris. The chemical analyses revealed that supplementing air with ozone led to an increasing reduction in the concentrations of floral volatiles in air with distance from the volatile source. The results revealed different reactivities with ozone for different floral scent constituents, which emphasized that ozone exposure not only degrades floral scents, but also changes the ratios of compounds in a scent blend. Behavioural tests revealed that floral scent was reduced in its attractiveness to pollinators after it had been exposed to 120 ppb O3 over a 4.5 m distance. The combined results of chemical analyses and behavioural responses of pollinators strongly suggest that high ozone concentrations have significant negative impacts on pollination by reducing the distance over which floral olfactory signals can be detected by pollinators.


Asunto(s)
Abejas/fisiología , Flores/química , Planta de la Mostaza/química , Ozono/efectos adversos , Compuestos Orgánicos Volátiles/química , Animales , Flores/fisiología , Cromatografía de Gases y Espectrometría de Masas , Planta de la Mostaza/fisiología , Ozono/análisis , Polinización
17.
Trends Plant Sci ; 20(9): 528-30, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26216205

RESUMEN

The emerging consistency of the relationship between biochemical, optical, and odorous signals emitted by plants and ecosystems offers promising prospects for continuous local and global monitoring of the energetic status of plants and ecosystems, and therefore of their processing of energy and matter.


Asunto(s)
Ecosistema , Metabolismo Energético , Plantas/metabolismo
18.
Funct Plant Biol ; 42(9): 851-857, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32480727

RESUMEN

Emissions of volatiles from leaves exhibit temperature dependence on maximums, but the optimum temperatures for the release of floral volatiles and the mechanism(s) of optimising these emissions have not been determined. We hypothesised that flowers have an optimum temperature for the emission of volatiles and, because the period of flowering varies highly among species, that this optimum is adapted to the temperatures prevailing during flowering. To test these hypotheses, we characterised the temperature responses of floral terpene emissions of diverse widespread Mediterranean plant species flowering in different seasons by using dynamic headspace sampling and analysis with GC-MS. The floral emissions of terpenes across species exhibited maximums at the temperatures corresponding to the season of flowering, with the lowest optimal temperatures observed in winter-flowering and the highest in summer-flowering species. These trends were valid for emissions of both total terpenes and the various terpene compounds. The results show that the optimum temperature of floral volatile emissions scales with temperature at flowering, and suggest that this scaling is the outcome of physiological adaptations of the biosynthetic or emission mechanisms of flowers.

19.
Sci Rep ; 4: 6727, 2014 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-25335793

RESUMEN

The emission of floral terpenes plays a key role in pollination in many plant species. We hypothesized that the floral phyllospheric microbiota could significantly influence these floral terpene emissions because microorganisms also produce and emit terpenes. We tested this hypothesis by analyzing the effect of removing the microbiota from flowers. We fumigated Sambucus nigra L. plants, including their flowers, with a combination of three broad-spectrum antibiotics and measured the floral emissions and tissular concentrations in both antibiotic-fumigated and non-fumigated plants. Floral terpene emissions decreased by ca. two thirds after fumigation. The concentration of terpenes in floral tissues did not decrease, and floral respiration rates did not change, indicating an absence of damage to the floral tissues. The suppression of the phyllospheric microbial communities also changed the composition and proportion of terpenes in the volatile blend. One week after fumigation, the flowers were not emitting ß-ocimene, linalool, epoxylinalool, and linalool oxide. These results show a key role of the floral phyllospheric microbiota in the quantity and quality of floral terpene emissions and therefore a possible key role in pollination.


Asunto(s)
Flores/metabolismo , Microbiota/fisiología , Polinización , Terpenos/metabolismo , Antibacterianos/administración & dosificación , Flores/efectos de los fármacos , Flores/crecimiento & desarrollo
20.
Glob Chang Biol ; 20(12): 3660-9, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24817412

RESUMEN

We addressed the potential effects of changes in ambient temperature on the profiles of volatile emissions from flowers and tested whether warming could induce significant quantitative and qualitative changes in floral emissions, which would potentially interfere with plant-pollinator chemical communication. We measured the temperature responses of floral emissions of various common species of Mediterranean plants using dynamic headspace sampling and used GC-MS to identify and quantify the emitted terpenes. Floral emissions increased with temperature to an optimum and thereafter decreased. The responses to temperature modeled here predicted increases in the rates of floral terpene emission of 0.03-1.4-fold, depending on the species, in response to an increase of 1 °C in the mean global ambient temperature. Under the warmest projections that predict a maximum increase of 5 °C in the mean temperature of Mediterranean climates in the Northern Hemisphere by the end of the century, our models predicted increases in the rates of floral terpene emissions of 0.34-9.1-fold, depending on the species. The species with the lowest emission rates had the highest relative increases in floral terpene emissions with temperature increases of 1-5 °C. The response of floral emissions to temperature differed among species and among different compounds within the species. Warming not only increased the rates of total emissions, but also changed the ratios among compounds that constituted the floral scents, i.e. increased the signal for pollinators, but also importantly altered the signal fidelity and probability of identification by pollinators, especially for specialists with a strong reliance on species-specific floral blends.


Asunto(s)
Cambio Climático , Flores/química , Modelos Biológicos , Odorantes/análisis , Temperatura , Compuestos Orgánicos Volátiles/análisis , Simulación por Computador , Cromatografía de Gases y Espectrometría de Masas , Polinización/fisiología , Terpenos/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...